Diterpenoid and Norditerpenoid Alkaloids from the Roots of Aconitum yesoense var. macroyesoense

by Koji Wada* and Norio Kawahara

School of Pharmacy, Hokkaido Pharmaceutical University, 7-1, Katsuraoka-cho, Otaru 047-02, Japan (phone: +81-134-62-5111; fax: +81-134-62-5161; e-mail: kowada@hokuyakudai.ac.jp)

A new diterpenoid alkaloid, macroyesoenline (1), and a new norditerpenoid alkaloid, 9hydroxyvirescenine (2), have been isolated from the roots of *Aconitum yesoense* var. *macroyesoense*. Their structures were elucidated on the basis of spectral data (1D- and 2D-NMR experiments) and mass spectrometry. The known norditerpenoid and diterpenoid alkaloids delphinifoline (3) and cochlearenine (13) were isolated for the first time from this plant.

Introduction. – We have investigated the alkaloidal components of *Aconitum yesoense* var. *macroyesoense* (NAKAI) TAMURA [1], a plant native to Hokkaido island, Japan. Pharmacological studies demonstrated that diterpenoid alkaloid components and their derivatives show cytotoxicity against A172 human malignant glioma cells [2]. By conventional chromatographic procedures, new diterpenoid and norditerpenoid alkaloids were isolated and named macroyesoenline (1) and 9-hydroxyvirescenine (2). Additionally, five known C_{19} -norditerpenoid alkaloids, delphinifoline (3) [3], 14-acetylbrowniine (4) [4], 14-acetyldelcosine (5) [4], browniine (6) [5] and delcosine (7) [4], and six known C_{20} -diterpenoid alkaloids, kobusine (8) [6], pseudokobusine (9) [6], yesonine (10) [7], lucidusculine (11) [6], dehydrolucidusculine (12) [8], and cochlearenine (13) [9] were found. Delphinifoline (3) and cochlearenine (13) have not been reported previously from *Aconitum yesoense* var. *macroyesoense*. In this report, the structure elucidation of two new minor alkaloids by applying 2D-NMR techniques is described. Since *Pelletier et al.* [10] previously reported only partial ¹³C-NMR data for delphinifoline (3), the complete ¹³C-NMR assignments are reported.

Results and Discussion. – The pulverized, air-dried roots of *A. yesoense* var. *macroyesoense* were extracted with 90% MeOH. The residue of the extract was dissolved in 5% HCl and extracted with hexane. The acidic fraction was basified at pH 10 with aqueous ammonia, and then extracted with $CHCl_3$. The hexane fraction was extracted with 5% HCl and the acidic fraction was basified at pH 10 with aqueous ammonia, and then extracted with $CHCl_3$. The hexane fraction was extracted with 5% HCl and the acidic fraction was basified at pH 10 with aqueous ammonia, and then extracted with $CHCl_3$. The combined $CHCl_3$ extract was concentrated to afford a crude alkaloidal mixture. Extensive purification by repeated chromatography finally afforded compounds **1** and **2**, as well as eleven known alkaloids.

Compound **1** was isolated as a colorless amorphous solid. The molecular formula of **1** was determined to be $C_{23}H_{35}NO_6$ by HR-EI-MS (m/z 421.2485 (M^+)). The assignments of the ¹H- and ¹³C-NMR signals (*Table 1*) of **1** were accomplished by a

^{© 2009} Verlag Helvetica Chimica Acta AG, Zürich

combination of DEPT, HMBC (*Fig. 1* and *Table 1*), and NOESY (*Fig. 2* and *Table 1*) data, which allowed to elucidate the structure of **1**.

The IR spectrum of 1 indicated the presence of a OH group (3350 cm^{-1}) and an ester function (1720 cm^{-1}) . The ¹H-NMR spectrum revealed the presence of a Me

Fig. 1. Key HMBC of 1

Position	1				13
	$\delta(C)$	$\delta(H)$	HMBC $(C \rightarrow H)$	NOESY	$\delta(C)$
1 2	74.3 (<i>d</i>) 26.5 (<i>t</i>)	5.02 (dd , $J = 10.7, 6.3$) 2.19–2.32 (m , H_a)	$H_a - C(2), H - C(3)$ H-C(1)	$H_{\beta}-C(2) = H_{a}-C(19), H-C(20)$	70.9 (<i>d</i>) 31.6 (<i>t</i>)
3	38.0 (<i>t</i>)	$1.83 - 1.89 (m, H_{\beta})$ 1.29 - 1.39 (m) 1.57 - 1.63 (m)	Me(18), CH ₂ (19)	Me(18)	38.4 (<i>t</i>)
4	33.6 (s)		$H_{\beta}-C((2), H-C(5), CH_{2}(6), Me(18), CH_{2}(19)$		33.5 (s)
5	53.0 (<i>d</i>)	1.38 $(d, J = 7.5)$	$H-C(3), CH_2(6),$ H-C(7), H-C(9), $Me(18), H_a-C(19),$ H = C(20)	H_{β} -C(6), H-C(9), Me(18)	53.1 (<i>d</i>)
6	23.2 (<i>t</i>)	1.21 – 1.27 (m, H_a) 2.76 $(dd, J = 13.6, 7.8, H_{\beta})$	H - C(20) H - C(20)	$Me(18), H_b-C(19)$ H-C(5)	23.8 (<i>t</i>)
7	41.7 (d)	2.22 - 2.24 (m)	$H-C(5), CH_2(6)$	H - C(15)	36.8(d)
8	43.4 (s)		$CH_2(6), H-C(9),$		42.6 (s)
			H-C(14), H-C(15)		
9	38.5 (<i>d</i>)	1.79–1.83 (<i>m</i>)	H-C(5), H-C(7), $CH_2(11), H-C(12),$ $H_e-C((14), H-C(15))$	$H-C(5), H_b-C(17)$	50.8 (d)
10	48.0 (s)		$H_{-C(1)}, H_{-C(5)}, H_{-C(7)}, H_{-C(9)}, H_{-C(20)}$		48.5 (s)
11	22.9 (<i>t</i>)	1.06 $(t, J = 12.2, H_a)$ 1.62–1.72 (m, H_b)	H - C(9), H - C(12)	H-C(13)	21.5 <i>(t)</i>
12	40.1 (d)	1.79 - 1.86(m)	$CH_2(11), H-C(15)$	$H-C(13), H_a-C(17)$	42.4(d)
13	71.5 (<i>d</i>)	3.88-3.94 (<i>m</i>)	$CH_2(11), H-C(12), H_\beta-C(14)$	$H_a - C(11), H - C(12), H_a - C(14)$	23.7 <i>(t)</i>
14	40.0 (<i>t</i>)	2.44–2.52 (m , H_a)	H–C(9), H–C(12), H–C(15)	H-C(13), H-C(20)	26.9 (<i>t</i>)
		$1.21 - 1.27 \ (m, H_{\beta})$		$H_a - C(15)$	
15	86.5 (<i>d</i>)	4.16 (<i>s</i>)	$H-C(9), H-C(12), CH_2(14), CH_2(17)$	$H-C(7), H_{\beta}-C(14)$	87.5 (<i>d</i>)
16	80.5 (s)		$H_a-C(11), H-C(12), H-C(13), H-C(15), CH_2(17)$		78.8 (s)
17	67.1 (<i>t</i>)	3.55 (AB , $J = 11.4$, H_a) 4.01 (AB , $J = 11.4$, H_b)		H-C(12) H-C(9)	67.9 (<i>t</i>)
18	25.8 (q)	0.71 (s)	$H-C(5), H_b-C(19), MeN$	$H-C(3), H-C(5), H_a-C(6), CH_2(19)$	26.8 (q)
19	59.1 (<i>t</i>)	2.44 (AB , $J = 11.2$, H_a)	H-C(3), H-C(5), Me(18), H-C(20), MeN	$H_{a}^{u} - C(6), Me(18)$	57.0 (<i>t</i>)
		2.30 ($AB, J = 11.2, H_b$)		$H_a - C(2)$	
20	69.5 (d)	3.50 (s)	H-C(1), H-C(5), H-C(6), H-C(9), $H_a-C(19), MeN$	$H_a - C(2), H_a - C(14)$	67.2 (<i>d</i>)
$N-CH_2Me$	-	-	_	-	51.1 (t)
MeN or $N-CH_2Me$	43.8 (q)	2.30 (s)	$H_{b}-C(19)$		13.6 (q)
CO Me	170.9 (s) 21.9 (q)	2.04 (s)	H-C(1), Me		

Table 1. ¹ H-NMR (400 MHz) and	¹³ C-NMR (100 MHz, DEPT) Data ^a) for 1, and ¹³ C-NMR (100 MHz, DEPT)
	Data for 13 in $CDCl_3$. δ in ppm, J in Hz.

^a) Chemical shifts were assigned on the basis of ¹H,¹H-COSY, HETCOR, and HMBC experiments.

Fig. 2. Key NOESY correlations of 1

group (δ (H) 0.71, *s*, 3 H), a MeN group (δ (H) 2.30, *s*, 3 H), and an Ac ester unit (δ (H) 2.04, *s*, 3 H). The ¹³C-NMR spectrum suggested that this compound had one AcO group and a total of five oxygenated C-atoms (δ (C) 67.1, 71.5, 74.3, 80.5, and 86.5). The ¹H- and ¹³C-NMR spectra indicated that macroyesoenline was a C₂₀-diterpenoid alkaloid with an atisine-denudatine skeleton [6]. Formation of the fragment ion *m*/*z* 390 corresponded to loss of a CH₂OH unit present as the result of the conversion of the exomethylene group at the C(16)–C(17) position, typical of a C₂₀-diterpenoid alkaloid, to a vicinal diol system, as in cochlearenine (**13**) [9] and dictysine (**14**) [11].

After assigning all non-quaternary C-atoms by H,C-COSY experiments (Table 1), placement and configuration of the functional groups were deduced by two- or threebond heteronuclear correlations from HMBC experiments (Fig. 1) and the NOESY spectrum (Fig. 2) as described as follows. A signal at $\delta(H)$ 3.88–3.94 (m, 1 H) connected to $\delta(C)$ 80.5 (C(16)) indicated the presence of a secondary OH group at C(13). Correlations of the signal at $\delta(H)$ 4.16 (s, H–C(15)) with $\delta(C)$ 80.5 (C(16)), 38.5 (C(9)), and 41.7 (C(7)) were observed. Furthermore, intense interaction between this signal ($\delta(H)$ 4.16) and H–C(14) in the NOESY spectrum demonstrated that macroyesoenline contains a β -orientated OH group on C(15) as do most of the C₂₀diterpenoid alkaloids. Correlations of the signal at $\delta(C)$ 74.3 (C(1)) with $\delta(H)$ 1.57– 1.63 (H–C(3)) and the coupling constants of a H-atom (δ (H) 5.02, dd, J=10.7, 6.3, 1 H) showed the presence of an α -AcO group at C(1). Signals at δ (H) 3.55 and 4.01 (each J=11.4) with a coupling pattern of AB type showed that C(17) contains a primary alcohol group. The NOE cross-peak between H-C(17) and H-C(9)established the relative configuration at the C(16) position as illustrated in Fig. 2. Other key two- and three-bond heteronuclear correlations also substantiated the structure of **1** (*Table 1*).

Compound **2** was obtained as colorless needles and had the molecular formula $C_{23}H_{37}NO_7$, as deduced from the HR-EI-MS (m/z 439.2552 (M^+)). From the ¹H- and ¹³C-NMR, DEPT, HMBC (*Table 2*), and NOESY (*Table 2*, *Fig. 3*) data, the structure of **2** was established.

The IR spectrum of **2** indicated the presence of OH groups (3320 cm⁻¹) but was devoid of absorptions attributable to CO or olefinic functionalities. The ¹H-NMR spectrum revealed the presence of an Et unit (δ (H) 1.04, *t*, *J* = 7.3, N-CH₂*Me*; 2.90, *q*, *J* = 7.3, N-CH₂Me) and two MeO groups (δ (H) 3.24 and 3.28), while the ¹³C-NMR spectrum suggested that this alkaloid had seven O-bearing C-atoms (δ (C) 72.7, 77.9, 78.0, 79.0, 81.1, 82.4, and 85.6). This evidence indicated that **2** is a C₁₉-norditerpenoid alkaloid with a lycoctonine skeleton [12].

Fig. 3. Key NOESY correlations of 2

The ¹³C-NMR spectra revealed resonances for 23 C-atoms, in accordance with the molecular composition deduced from the mass spectral evidence. The ¹³C-NMR resonances were very similar to the resonances of virescenine (15) [4][5][13], except for the resonances of C(8), C(9), C(10), C(12), C(14), and C(15) (*Table 2*), all this suggested that a H-C(9) group was replaced by a HO-C(9) group. Thus, the ¹³C-NMR spectrum contained three signals for O-bearing tertiary C-atoms at δ (C) 77.9, 78.0, and 85.6. The relative configuration of HO-C(9) was deduced from the NOESY spectrum, with the observed NOEs $H-C(10)/H_{\beta}-C(12)$, $H_{\beta}-C(12)/H-C(13)$, $H-C(13)/H_{\beta}-C(14)$, and $H_{\beta}-C(14)/H-C(10)$, which indicated that the OH group is placed at C(9). In HMBC experiments, the doublet at $\delta(H)$ 1.39 (H_a-C(6)) correlated to $\delta(C)$ 37.6 (C(4)), 40.7 (C(5)), 78.0, and 85.6, and the signal the $\delta(C)$ 78.0 correlated to $\delta(H)$ 1.89 (H-C(10)), and was thus assigned to C(8). In addition, correlations of the signal at $\delta(H)$ 1.73 (dd, $J = 6.8, 15.6, H_{\beta} - C(15)$) with $\delta(C)$ 78.0 and 85.6 suggested that the signal at $\delta(C)$ 85.6 could be assigned to C(7). A *doublet* signal at δ (H) 3.85 (J = 5.3, H-C(14)) was coupled to a CH group at δ (H) 2.20 (dd, J = 5.3, 7.8, H-C(13)) in ¹H,¹H-COSY experiments. The remaining O-bearing tertiary C-atom was assigned through correlations of the resonance at $\delta(C)$ 77.9 (C(9)) to H–C(14) ($\delta(H)$ 3.85) and $H_a - C(15) (\delta(H) 3.04)$.

Delphinifoline (**3**) was isolated and identified from this plant for the first time. *Pelletier et al.* [10] previously reported only partial ¹³C-NMR data for delphinifoline (**3**); here, we report the complete ¹³C-NMR assignments (*Table 3*).

The ¹H-NMR spectrum revealed the presence of an Et unit (δ (H) 3.04–3.11 and 3.22–3.28, 2m, N–CH₂Me, 1.13, t, J=7.0, N–CH₂Me) and two MeO units (δ (H) 3.16 and 3.34). The ¹³C-NMR spectra indicated resonances for 23 C-atoms, in accordance with the molecular composition deduced from the mass spectral evidence. The ¹³C-NMR spectrum suggested that this alkaloid had seven O-bearing C-atoms (δ (C) 73.3, 76.2, 78.9, 79.0, 80.7, 83.7, and 88.6) (*Table 3*). Furthermore, the ¹³C-NMR spectrum showed two signals for O-bearing tertiary C-atoms at δ (C) 79.0 and 88.6. In COLOC experiments, the signal at δ (C) 79.0 correlated to δ (H) 2.43–2.51 (H–C(15)), 3.58 (H–C(9)), and 4.48 (H–C(14)) and was thus assigned to C(8). In addition, correlations of the signal at δ (C) 88.6 with δ (H) 2.03 (H–C(5)), 3.29 (H–C(17)), and 4.96 (H–C(6)) suggested that the signal at δ (C) 88.6 could be assigned to C(7). *Doublet* signals at δ (C) 73.3 (C(1)), 76.2 (C(14)), and 83.7 (C(16)) coupled to signals of H–C(3) (δ (H) 2.02–2.06), H–C(12) (δ (H) 2.11–2.19), and CH₂(15) (δ (H) 2.43–2.51 and 3.25–3.37), respectively. The remaining oxygenated C-

Position	2				
	$\delta(C)$	$\delta(H)$	HMBC $(C \rightarrow H)$	NOESY	$\delta(C)$
1	72.7 (<i>d</i>)	3.54–3.58 <i>(m)</i>	H-C(3)	$CH_2(2), H_\beta - C(3), H - C(5)$	72.2 (<i>d</i>)
2	29.1 (t)	1.48 - 1.51 (m)		$H-C(1), CH_2(3)$	29.1 $(t)^{b}$
3	26.7 (<i>t</i>)	1.60 - 1.65 (m), 1.82 - 1.86 (m)	CH ₂ (18), CH ₂ (19)	$H-C(1), CH_2(2), H-C(19)$	26.8 $(t)^{b}$)
4	37.6 (s)		$CH_2(2), H-C(5), H_a-C(6), CH_2(19)$		37.6 (s)
5	40.7 (<i>d</i>)	1.81 $(d, J = 7.3)$	H_{α} -C(6), H-C(17), CH ₂ (18), CH ₂ (19)	$H_{\beta}-C(2), H_{\beta}-C(6), H_{-}C(10), CH_{2}(18)$	41.8 (<i>d</i>)
6	32.3 (<i>t</i>)	1.39 ($d, J = 14.7, H_a$) 2.82–2.93 (m, H_β)	H-C(17)	$CH_2(18)$ H-C(5)	33.4 <i>(t)</i>
7	85.6 (s)		$H-C(5), CH_2(6), CH_2(15)$		86.0 (s)
8	78.0 (s)		$CH_2(6), H-C(10), H-C(14), H_{\beta}-C((15))$		76.1 (s)
9	77.9 (s)		$H-C(13), H_a-C(15)$		47.6 (d)
10	48.5 (<i>d</i>)	1.89 (dd, J = 12.7, 5.3)	$H-C(1), H_a-C(12), H-C(13)$	$H-C(5), H_{\beta}-C(12), H-C(14)$	43.4 (<i>d</i>)
11	49.7 (s)		$H-C(2), H-C(5), H_{\alpha}-C(6), H-C(10), H_{\alpha}-C(12), H-C(17)$		49.3 (s)
12	26.4 (<i>t</i>)	$1.56 - 1.63 (m, H_a)$ $2.08 - 2.18 (m, H_{\beta})$	u () / ()	H-C(16), H-C(17) H-C(10)	28.4 $(t)^{b}$)
13	39.5 (d)	2.20 (dd, J = 7.8, 5.3)	$H_{a} - C(15)$	H - C(14)	39.5 (d)
14	81.1 (<i>d</i>)	3.85 (d, J = 5.3)	$H_a - C(12), H - C(16)$	H-C(10), H-C(14)	75.4(d)
15	37.6 (<i>t</i>)	3.04 $(dd, J = 15.6, 8.8, H_{a})$ 1.73 $(dd, J = 15.6, 6.8, H_{\beta})$		H-C(17)	35.8 (<i>t</i>)
16	82.4 (<i>d</i>)	3.38(t, J = 8.3)	CH ₂ (12), H–C(13), H–C(14), H _{β} –C(15), 16-MeO	H_{α} -C(12), H-C(17)	81.8 (<i>d</i>)
17	64.9 (<i>d</i>)	2.65 (s)	H-C(5), H-C(10), H-C(19)	$H_a-C(12), H_a-C(15), H-C(16), MeCH_2-N$	64.8 (<i>d</i>)
18	79.0 (<i>t</i>)	2.99(AB, J = 8.3)	18-MeO	$H_{a} - C(6), H - C(5)$	78.6(t)
		3.09(AB, J = 8.3)		$H_{a}^{u} - C(6), H - C(5)$	
19	56.3 (<i>t</i>)	2.39 (AB , $J = 11.2$)	$H-C(5), H_{\beta}-C(6), H-C(17), CH_2(18)$	MeCH ₂ -N	55.7 (<i>t</i>)
		2.69 ($AB, J = 11.2$)		$H_a - C(3), H_a - C(6),$ MeCH ₂ -N	
$N-CH_2Me$	50.5 (t)	2.90 (q, J = 7.3)	H-C(17), <i>Me</i> CH ₂ -N	H - C(17)	50.4 (t)
$N - CH_2Me$	13.8 (q)	1.04(t, J = 7.3)	2	$CH_{2}(19)$	13.6(q)
16-MeO	56.5 (q)	3.28(s)	H-C(16)		56.2(q)
18-MeO	59.4 (q)	3.24 (s)	CH ₂ (18)		59.3 (q)

Table 2. ¹ H-NMR (400 MHz) and ¹³ C-NMR (100 MHz, DEPT) Data ^a) for 2, and ¹³ C-NMR (100 MHz, DEPT)
Data for 15 in $CDCl_3$. δ in ppm, J in Hz.	

^a) Chemical shifts were assigned on the basis of ¹H,¹H-COSY, HETCOR, and HMBC experiments. ^b) These assignments are revised.

Position	3 [10]	3		
	$\delta(C)$	$\delta(C)$	$\delta(H)$	COLOC $(C \rightarrow H)$
1	72.8	73.3 (<i>d</i>)	3.89-3.97 (<i>m</i>)	H-C(3)
2	28.1	30.1(t)	$1.68 - 1.76 (m, H_a)$	
			$1.86 - 1.92 (m, H_{\beta})$	
3	29.4	28.5(t)	$1.87 - 1.93 (m, H_a)$	$CH_{2}(19)$
			$2.02 - 2.06 (m, H_{\beta})$	
4	37.5	38.2(s)		$H-C(2), H-C(5), H-C(6), CH_2(19)$
5	45.1	51.2(d)	2.03(s)	$H-C(17), CH_2(19)$
6	79.1	80.7 (<i>d</i>)	4.96 (s)	H-C(5), H-C(17)
7	_	88.6 (s)		H-C(5), H-C(6), H-C(17)
8	_	79.0 (s)		H-C(9), H-C(14), H-C(15)
9	45.1	46.4(d)	3.58 (t, J = 5.3)	H-C(15)
10	39.2	45.1 (d)	2.07 - 2.11 (m)	H-C(13)
11	50.3	49.3 (s)	. ,	H-C(2), H-C(5), H-C(6), H-C(17)
12	28.7	30.8(t)	$2.57 - 2.60 (m, H_a)$	
			$2.11 - 2.19 (m, H_{\beta})$	
13	44.1	40.7 (<i>d</i>)	2.51 - 2.55 (m)	H-C(9)
14	76.4	76.2 (d)	4.48 (t, J = 4.4)	H-C(12)
15	36.6	35.3(t)	2.43 - 2.51 (m), 3.25 - 3.37 (m)	
16	81.8	83.7 (<i>d</i>)	3.64(t, J = 7.8)	H-C(15)
17	66.9	67.0 (<i>d</i>)	3.29(s)	$H-C(5), CH_2(19)$
18	80.6	78.9(t)	3.15 (AB, J = 5.3)	MeO-C(18')
			3.36 (AB, J = 5.3)	
19	57.5	57.9 (t)	2.67 (AB, J = 11.4)	H-C(5), H-C(17)
			2.83 (AB, J = 11.4)	
$N-CH_2Me$	50.5	50.8 (t)	3.04 - 3.11 (<i>m</i>), $3.22 - 3.28$ (<i>m</i>)	
$N - CH_2Me$	13.9	13.9 (q)	1.13 (t, J = 7.0)	
16-MeO	56.2	55.8 (q)	3.34 (s)	
18-MeO	59.6	59.0 (q)	3.16(s)	

Table 3. ¹*H*-*NMR* (270 MHz) and ¹³*C*-*NMR* (67.5 MHz, DEPT) *Data*^a) for **3** in (D_5)*Pyridine*. δ in ppm, *J* in Hz.

atom was assigned through observation of correlations of the resonance at $\delta(C)$ 80.7 (C(6)) to H–C(5) ($\delta(H)$ 2.03) and H–C(17) ($\delta(H)$ 3.29). The remaining C-atoms were assigned through HETCOR and COLOC experiments. All C-atom assignment data are shown in *Table 3*.

Macroyesoenline (1) is an unusual alkaloid: to our knowledge it is only the third example after cochlearenine (13) [9] and dictysine (14) [11] of a C_{20} -diterpenoid alkaloid in which the unit usually present as an exocyclic CH₂ group has been converted to a vicinal diol. This suggests that in biological pathways, macroyesoenline could be generated from the ring-opening of epoxy precursors such as yesoxine (16) [14].

Experimental Part

General. All solvents were of anal. grade (Wako Pure Chemical Industries, Osaka, Japan). Column chromatography (CC): silica gel (SiO₂; 230-400 mesh; Merck). TLC: precoated SiO₂ plates;

visualization by spraying with *Dragendorff* reagent. M.p.: *Yanagimoto micromelting point* apparatus; uncorrected. Optical rotation: *Jasco Model DIP-340* polarimeter. IR Spectra: *Jasco Model FT/IR 7000* spectrometer; KBr pellets; in cm⁻¹. ¹H- and ¹³C-NMR Spectra: *JEOL Model AL-400* and *GX-270* spectrometers; in CDCl₃ or (D₅)pyridine with tetramethylsilane as an internal standard; δ in ppm, *J* in Hz. EI-MS: *Hitachi Model M-2000* mass spectrometer; in *m/z* (rel. %).

Plant Material. The roots of *A. yesoense* var. *macroyesoense* (NAKAI) TAMURA (1.8 kg) were collected from Jozankei, Sapporo City, Hokkaido, Japan in August 1990 and August 1991.

Extraction and Isolation. The dried and powdered root was extracted with 90% MeOH at r.t. and evaporated to give a residue (629 g). This was dissolved in 5% HCl (ν/ν , 70 ml) and extracted with hexane (300 ml × 6). The acidic fraction was basified at pH 10 in the ice bath with aq. NH₃. Extraction with CHCl₃ (400 ml × 13) and evaporation of the extract gave a crude mixture of alkaloids (39.7 g). The hexane fraction was extracted with 5% HCl (ν/ν , 150 ml × 6) and the acidic fraction was basified at pH 10 in the ice bath with aq. NH₃. Extraction with CHCl₃ (200 ml × 10) and evaporation of the extract gave a crude mixture of alkaloids (39.7 g). The hexane fraction was extracted with 5% HCl (ν/ν , 150 ml × 6) and the acidic fraction was basified at pH 10 in the ice bath with aq. NH₃. Extraction with CHCl₃ (200 ml × 10) and evaporation of the extract gave a crude mixture of alkaloids (7.1 g). The combined crude alkaloidal mixture was chromatographed on a SiO₂ (*Merck*) column and eluted with CHCl₃ (sat. with aq. NH₃)/MeOH mixture of increasing polarity. Fractions were collected and pooled according to their TLC pattern to give five main fractions (A - E). Each fraction was chromatographed, and 13 compounds were isolated: from *Fr. A*: **4** (531 mg), **5** (5440 mg), and **12** (65 mg); *Fr. B*: **6** (14 mg), **7** (1356 mg), and **11** (4316 mg); *Fr. C*: **1** (83 mg), **2** (20 mg), **8** (2056 mg), and **11** (1076 mg); *Fr. D*: **13** (8 mg), **3** (11 mg), **8** (175 mg), and **9** (1052 mg); *Fr. E*: **9** (1056 mg) and **10** (64 mg).

Macroyesoenline (=(1α ,7 β ,13R,15 β)-13,15,16,17-Tetrahydroxy-4,21-dimethyl-7,20-cycloatidan-1-yl Acetate; **1**). Colorless, amorphous solid. [a]_D²⁰ = -33.8 (c = 0.13, EtOH). IR (KBr): 3350 (OH), 1720 (C=O), 1240. ¹H- and ¹³C-NMR: *Table 1*. EI-MS (70 eV): 421 (48, M^+), 404 (29, [M – OH]⁺), 390 (11, [M – CH₂OH]⁺), 362 (100, [M – OCOMe]⁺). HR-EI-MS (70 eV): 421.2485 (M^+ , C₂₃H₃₅NO⁺₆; calc. 421.2463).

9-Hydroxyvirescenine $(=(1\alpha,7\beta,14\alpha,16\beta)-20$ -Ethyl-16-methoxy-4-(methoxymethyl)aconitane-1,7,8,9,14-pentol; **2**). Colorless needles. M.p. 236–238°. $[\alpha]_D^{20} = +10.0$ (c = 0.12, EtOH). IR (KBr): 3320 (OH). ¹H- and ¹³C-NMR: *Table 2*. EI-MS (70 eV): 439 (81, M^+), 424 (100, $[M - Me]^+$), 422 (74, $[M - OH]^+$). HR-EI-MS (70 eV): 439.2552 (M^+ , $C_{23}H_{37}NO_7^+$; calc. 439.2567).

 $\begin{array}{l} Delphinifoline \ (=(1\alpha,6\beta,7\beta,14\alpha,16\beta)-20-Ethyl-16-methoxy-4-(methoxymethyl)aconitane-1,6,7,8,14-pentol; \ \textbf{3}). \ Colorless needles. M.p. 238-241^{\circ}. \ IR \ (KBr): 3400 \ (OH). \ ^{1}H- \ and \ ^{13}C-NMR: \ Table \ \textbf{3}. \ EI-MS \ (70 \ eV): 439 \ (94, \ M^+), 424 \ (94, \ [M-Me]^+), 422 \ (100, \ [M-OH]^+). \ HR-EI-MS \ (70 \ eV): 439.2593 \ (M^+, \ C_{23}H_{37}NO_7^+; \ calc. \ 439.2567). \end{array}$

Cochlearenine (=(1α , 7β , 15β)-21-Ethyl-4-methyl-7,20-cycloatidane-1,15,16,17-tetrol; **13**). Colorless, amorphous solid. IR (KBr): 3340 (OH). ¹H-NMR (270 MHz): 0.71 (*s*, Me(18)); 1.05 (*t*, *J* = 7.3, 3 H, N-CH₂Me); 1.27 (*d*, *J* = 9.7, H-C(5)); 1.49-1.53 (*m*, H-C(7)); 1.82-1.90, 2.17-2.25 (2*m*, each 1 H of CH₂(2)); 1.97-2.00 (*m*, CH₂(12)); 2.09 (*d*, *J* = 5.6, H-C(13)); 2.23, 2.50 (2*d*, *J* = 10.5, each 1 H of CH₂(19)); 2.42-2.47 (*m*, N-CH₂Me); 3.49, 4.21 (2*d*, *J* = 11.4, each 1 H of CH₂(17)); 3.72 (*s*, H-C(20)); 3.84 (*dd*, *J* = 10.9, 6.6, H-C(1)); 4.03 (*s*, H-C(15)). ¹³C-NMR (67.5 MHz): Table 1. EI-MS (70 eV): 377 (67, *M*⁺), 360 (52, [*M*-OH]⁺), 346 (39, [*M*-CH₂OH]⁺), 186 (100). HR-EI-MS (70 eV): 377.2555 (*M*⁺), C₂₂H₃₅NO⁺; calc. 377.2563).

REFERENCES

- [1] K. Wada, H. Bando, N. Kawahara, Heterocycles 1990, 31, 1081.
- [2] K. Wada, M. Hazawa, K. Takahashi, T. Mori, N. Kawahara, I. Kashiwakura, J. Nat. Prod. 2007, 70, 1854.
- [3] V. N. Aiyar, P. W. Codding, K. A. Kerr, M. H. Benn, A. J. Jones, Tetrahedron Lett. 1981, 22, 483.
- [4] S. W. Pelletier, N. V. Mody, A. P. Venkov, S. B. Jones Jr., Heterocycles 1979, 12, 779.
- [5] S. W. Pelletier, N. V. Mody, in 'The Alkaloids', Ed. R. H. F. Manske, R. G. A. Rodrigo, Academic Press, New York, 1979, Vol. XVII, p. 1.
- [6] S. W. Pelletier, N. V. Mody, in 'The Alkaloids', Ed. R. H. F. Manske, R. G. A. Rodrigo, Academic Press, New York, 1981, Vol. XVIII, p. 99.

- [7] K. Wada, H. Bando, T. Amiya, N. Kawahara, *Heterocycles* 1989, 29, 2141.
- [8] K. Wada, H. Bando, T. Amiya, *Heterocycles* **1985**, *23*, 2473.
- [9] U. Kolak, A. Türkekul, F. Özgökçe, A. Ulubelen, *Pharmazie* 2005, 60, 953; U. Kolak, M. Öztürk, F. Özgökçe, A. Ulubelen, *Phytochemistry* 2006, 67, 2170.
- [10] S. W. Pelletier, N. V. Mody, B. S. Joshi, L. C. Schramm, in 'Alkaloids: Chemical and biological perspectives', Ed. S. W. Pelletier, Wiley-Interscience, New York, 1984, Vol. 2, p. 205.
- B. T. Salimov, N. D. Abdullaev, M. S. Yunusov, S. Y. Yunusov, *Khim. Prir. Soedin.* 1979, 812 (*Chem. Abstr.* 1979, 93, 46911w); B. Tashkhodzhaev, *Khim. Prir. Soedin.* 1982, 230 (*Chem. Abstr.* 1982, 97, 163295a).
- [12] F.-P. Wang X. Liang, in 'The Alkaloids', Ed. A. Brossi, Academic Press, San Diego, 1992, Vol. 42, p. 151.
- [13] A. G. González, G. de la Fuente, T. Orribo, R. D. Acosta, Heterocycles 1985, 23, 2979.
- [14] H. Bando, K. Wada, T. Amiya, K. Kobayashi, Y. Fujimoto, T. Sakurai, Heterocycles 1987, 26, 2623.

Received September 9, 2008